

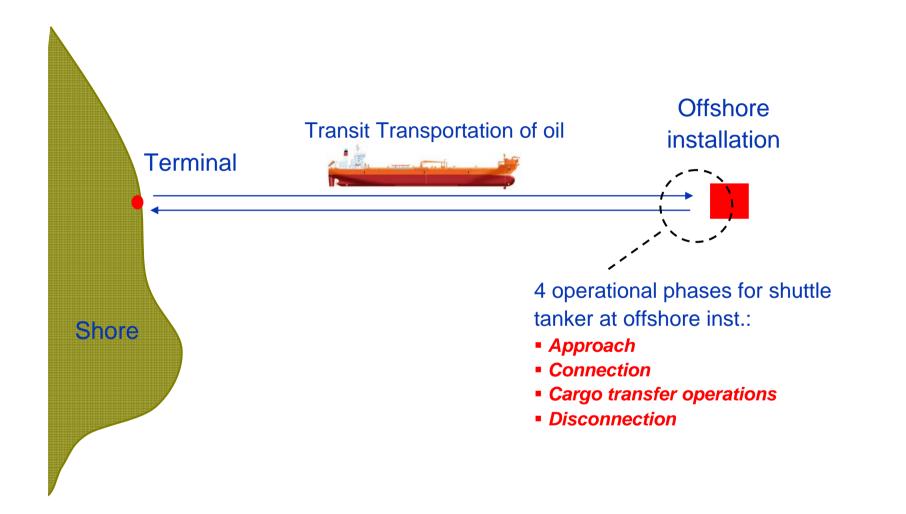
Ice Management Operations

Barents 2020, Phase 4, Working Group 6, Moscow

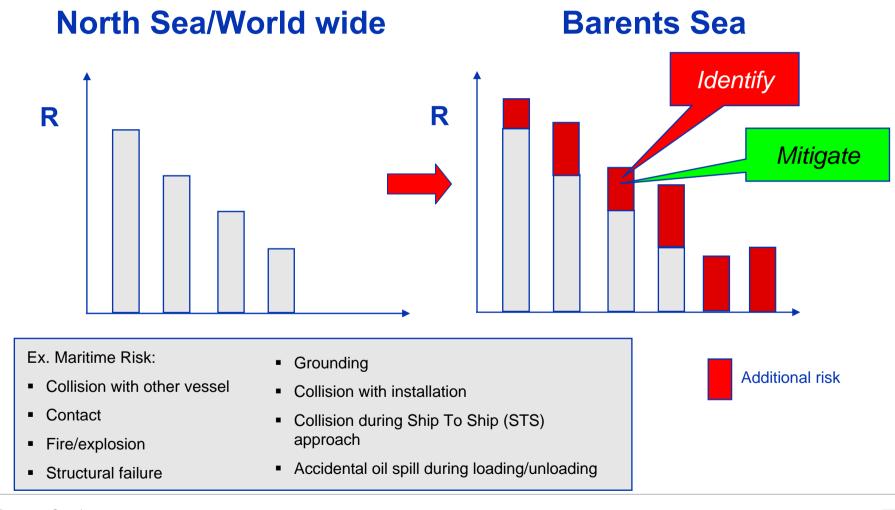
M. Mejlaender-Larsen, Dmitry A. Onishchenko 9th December 2010

Barents 2020 Phase 4 – Working Group 6 Members

Dmitry A. Onishchenko (Russ. Coordinator)	VNIIGAS
Mikael A. Naumov	VNIIGAS
Igor Y. Bardin	Lukoil
Vladimir Legostaev	Giprospetzgaz
Anna Kvasnyak	JSC Gazprom CKBN Engineering
Roman A. Gurman	Lukoil
Oleg A. Gasnikov	GNINGI
Vladimir Yurievich Pinchuk	Gazprom dobycha shelf
Jarkko Toivola	Neste Oil
Karl Hamberg	Aker Arctic
Kenneth J. Eik	Statoil
Pavel Liferov	Shtokman Development AG
lan Reed	Shell
Claire Channelliere	Total (Metocean)
lan Reed	Shell
Capt. Kevan McGregor	Shell
Bård E. Bjørnsen	Ship Manoeuvring Simulator Centre
Morten Mejlænder-Larsen (Norw. Coordinator)	DNV


Content

- Background from phase 3
- Scope RN06
- Definition of Ice Management, IM
- Topics included in IM
- Further work



Scope of Work, phase 3

Risk = **P**robability x **C**onsequence

Ice Management Operations 9th December 2010 © Det Norske Veritas AS. All rights reserved.

Identifying risk

- Focus on the relative risk (Δ) between North Sea and Barents Sea
- Identify the Barents Sea Challenges:
 - Low temperatures
 - Ice (at least for parts of the year), including ice management
 - Darkness
 - Remoteness (less infrastructure available for clean-up of spills etc)
 - Vulnerable Environment

Main Conclusions from the Risk Analysis:

Ice Management

- Procedures and Standards
- Training
- Competence
- Capability of vessel
- Collision with ice, transit in oper water
- Equipment standards Coveriness Generally: Cargo transfer offshore

- Higher risk due to operational conditions and more severe consequences
- To be taken care of by operational standards and modification of equipment

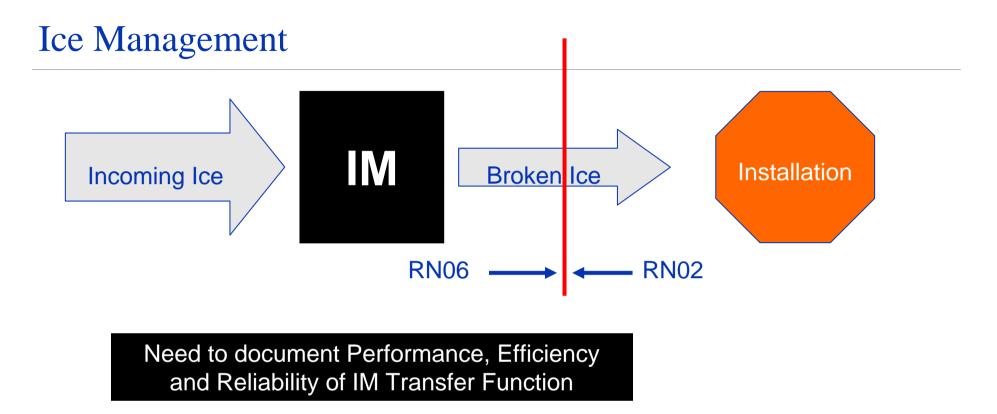
Phase 4, Objective RN-06, IM

- The aim is to make the IM operation more safe and optimal from an economical and environmental point of view
- ISO 19906 gives a good description of IM in general and what to do, but not always <u>how</u> to do it

identify relevant IM parameters

content of IM Manual

propose updates of ISO 19906



IM for Arctic Offshore Activities

ISO 19906 definition of ice management:

"Active processes used to alter the ice environment with the intent of reducing the frequency, severity or uncertainty of ice actions"

IM primary objectives are:

- Ensure installation safety from sea ice and iceberg hazards
 - by proper surveillance (detection, tracking, forecasting) and alerting
- Minimize shutdown and disconnections
 - by performing proper ice management

Secondary objectives are:

• Assist during EER, connection/disconnection, logistics

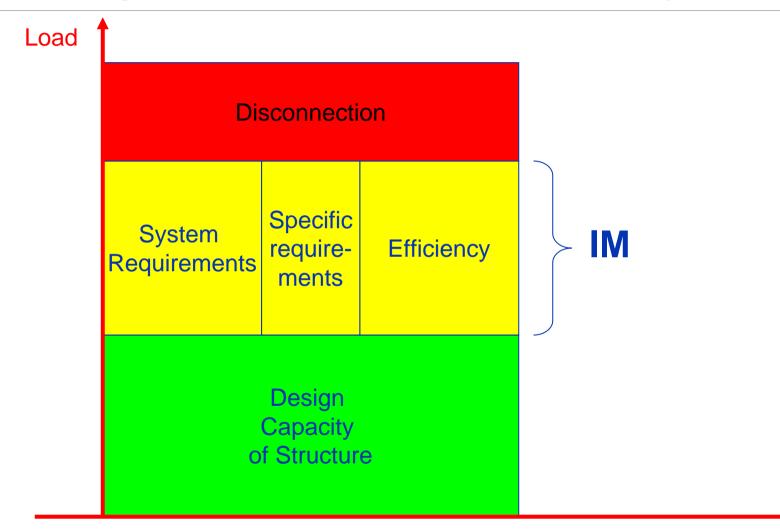
Some identified Ice Management Challenges

Design stage:

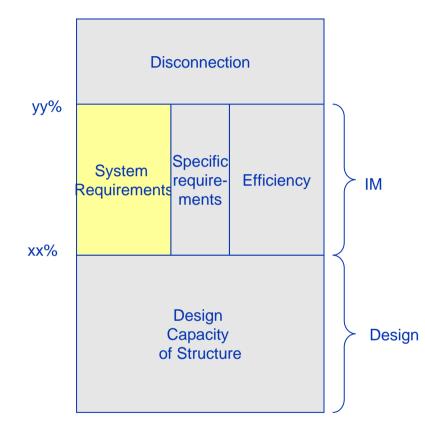
- Limited documented experience
 - few cases and limited official data
- Lack of good prediction methods
 - efficiency and reliability of IM
 - design criteria

Operational stage:

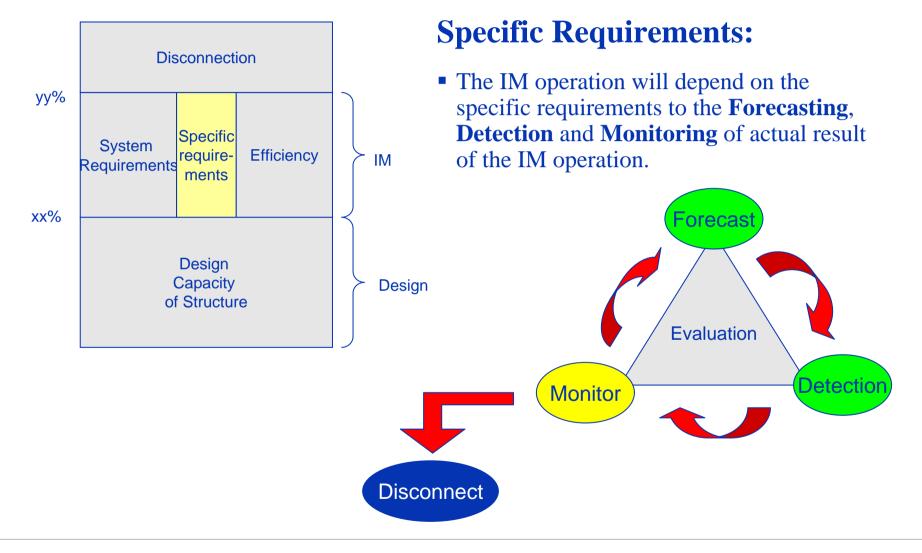
- Lack of Ice information and evaluation of actual situation
- Depends on human operation
 - human fatigue
 - need continuous attention
 - man can only reduce effectiveness of a tool (here i.e. ice breaker)
 - communication

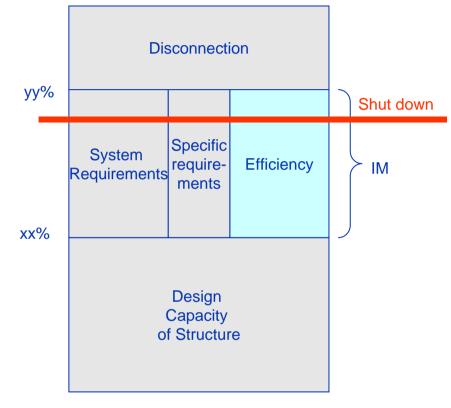

- etc.

Ice Management Operations 9th December 2010 © Det Norske Veritas AS. All rights reserved.



Ice Management – need to document reliability





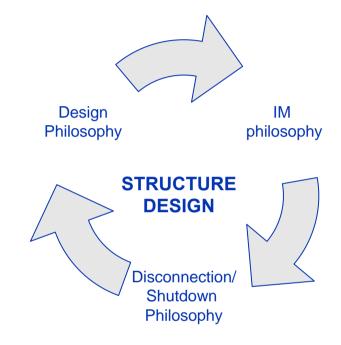
System Requirements:

- Icebreaker capability
 - Ice-class, power, manoeuvrability etc
- Mooring capacity

Efficiency:

- The efficiency of the IM operation will depend on the specific requirements and how the actual IM is carried out.
- The ice breaker will brake the ice according to the available information and capacity of vessel
- The ultimate manoeuvring of the icebreaker will be decided by the commanding officer onboard the ice breaker.
- Definition of xx and yy level will depend on actual design.
 - below xx, ok to operate without icebreaker
 - between xx and yy, IM in operation. A level where shutdown is initiated has to be defined.
 - at yy, disconnection is initiated

Ice Management Operations 9th December 2010 © Det Norske Veritas AS. All rights reserved.


Review of ISO 19906

- The requirements to actually document the efficiency (performance in ISO 19906) is clear, but no specific requirements to the documentation.
- ISO merely states that you shall do it, not how or what.
- The normative provisions do not address how or whether the knowledge and methods are available to meet the requirements
- Clause 17.2.4 addresses the ice management system reliability and states:
 - "Design and operational considerations shall be used to assess the overall reliability of an ice management system."

Some issues to be considered

- The ice load capacity of the managed structure depends on the actual design, and the philosophy behind.
- A strong structure with a robust mooring system will require a higher investment at design stage, (capex), but less operational cost (opex).

- Forecasting
- Detection
- Tracking
- Threat evaluation
- Physical Ice Management
- Monitoring
- Training and Procedures
- Shutdown production
- Procedures for disconnection _

-Considered as design parameters

Forecasting

- Detection
- Tracking
- Threat evaluation
- Physical Ice Management
- Monitoring
- Training and simulation

- State of art with regard to forecast different types of ice, ice cover etc.
- Weather forecast
- Information related to tide currents
- Possible ice bergs and drift directions

- Forecasting
- Detection
- Tracking
- Threat evaluation
- Physical Ice Management
- Monitoring
- Training and simulation

- State of art with regard to detection technology:
 - Air borne, plane and helicopters
 - Unmanned Aerial Vehicles
 - Radar
 - IR Cameras
- Find most severe ice condition

- Forecasting
- Detection
- Tracking
- Threat evaluation



- State of art with regard to tracking technology:
 - Air borne, plane and helicopters
 - Unmanned Aerial Vehicles
 - Radar
 - IR Cameras
 - GPS transducers
 - Radio transducers

- Forecasting
- Detection
- Tracking
- Threat evaluation
- Physical Ice Management
- Monitoring
- Training and simulation

- Analyse actual ice condition and evaluate degree of manageability
 - global loads
 - local loads
 - ability stay in position
 - ability to orient towards incoming ice
- Evaluate Risk and Probability of success
- Decide procedure for IM

MANAGING RISI

- Forecasting
- Detection
- Tracking
- Threat evaluation
- Physical Ice Management
- Monitoring
- Training and simulation

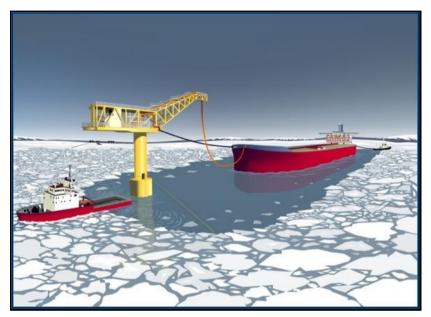
- Based on the IM vessels capabilities, carry out IM according to predefined procedures.
 - operational envelopes for systems
- IM should be carried out according to the predefined procedures as far as possible
- Risk evaluation
- Common understanding of the situation and ongoing IM operation

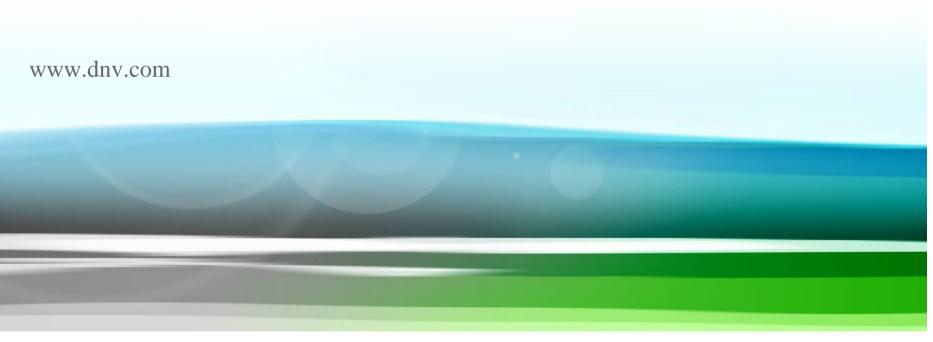
- Forecasting
- Detection
- Tracking
- Threat evaluation
- Physical Ice Management
- Monitoring
- Training and simulation

- Monitoring should include:
 - the broken ice, i.e. the ice moving towards the installation
 - local and global loads at installation, forward and along hull in case of reduced ability to vain
 - trends of loads
- In case of risk of failure or exceeding load limits, necessary actions according to procedures for emergency operations have to be initiated.
- This includes:
 - alteration of physical IM
 - shutdown
 - disconnection

- Forecasting
- Detection
- Tracking
- Threat evaluation
- Physical Ice Management
- Monitoring
- Training and simulation

Includes


- procedures
- requirements and documentation of competence
- simulator training
- emergency training



Further work RN06

- Carry out a IM Hazid workshop (February)
- Fill in ISO 19906 gap analysis table
- Draft content of IM report, State of Art
 including gap analysis of ISO 19906
- Circulate draft for input/comments (March)
- Next meeting in May, -agree upon final text

Safeguarding life, property and the environment

